#安装scikit-learn pip install Anaconda from sklearn.datasets import make_regression import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression #生成核酸数据 x,y=make_regression(n_samples=100,n_features=1,noise=20,random_state=0) print(x.shape) plt.scatter(x,y) lr_model=LinearRegression() lr_model.fit(x,y) LinearRegression(copy_X=True,fit_intercept=True,n_jobs=1,normalize=False) #评估 train_score=lr_model.score(x,y) plt.plot(x,lr_model.predict(x),'r') #a lr_model.coef_ #b lr_model.intercept_ #以下是预测, new_x=5 y=lr_model.predict(new_x) #增加特征数量,来增加精度
机器学习入门-线性回归预测房价
阅读:4384 输入:2020-05-12 15:07:11
- 上一篇:python正则爬淘宝搜索数据
- 下一篇:不用js纯css实现五星好评