主页 M

增强学习Q-learning入门实例,只看这一例

2021-04-30 网页编程网 网页编程网

1.问题提出

为了实现自走的路径,并尽量避免障碍,设计一个路径。如图所示,当机器人在图中的任意网格中时,怎样让它明白周围环境,最终到达目标位置。

这里给出一个运行结果,首先给他们编号如下:作为位置的标识。

然后利用Q-Learning的奖赏机制,完成数据表单更新,最终更新如下:

在机器人实际选择路径时,按照该表中的最大值选择,最终走到24号位置,并避开了红色方块。

如初始位置在4时候,首先选择了最大值向左到3,然后在3处选择了最大值向下,然后到8处选择了向下,等等,最终完成路径的选择。而这种选择正是使用Q-Learning实现的。

2.Q-learning的想法

2.1奖赏机制

在一个陌生的环境中,机器人首先的方向是随机选择的,当它从起点开始出发时,选择了各种各样的方法,完成路径。

但是在机器人碰到红色方块后,给予惩罚,则经过多次后,机器人会避开惩罚位置。

当机器人碰到蓝色方块时,给予奖赏,经过多次后,机器人倾向于跑向蓝色方块的位置。

2.2具体公式

完成奖赏和惩罚的过程表达,就是用值表示吧。首先建立的表是空表的,就是说,如下这样的表是空的,所有值都为0:

在每次行动后,根据奖惩情况,更新该表,完成学习过程。在实现过程中,将奖惩情况也编制成一张表。表格式如上图类似。

而奖惩更新公式为:

贝尔曼方程:

其中的表示当前的Q表,就是上图25行4列的表单。表示学习率,表示下一次行为会得到的奖惩情况,表示一个贪婪系数,在这里的公式中,就是说,如果它的数值比较大,则更倾向于对远方的未来奖赏。

该式子在很多网页文本中并没有固定的格式,如贪婪系数,在有些时候是随着步数的增加而递减的(可能)。

3.代码实现

导入对应的库函数,并建立问题模型:

import numpy as np
import pandas as pd
import time
N_STATES = 25   # the length of the 2 dimensional world
ACTIONS = ['left', 'right','up','down']     # available actions
EPSILON = 0.3   # greedy police
ALPHA = 0.8     # learning rate
GAMMA = 0.9    # discount factor
MAX_EPISODES = 100   # maximum episodes
FRESH_TIME = 0.00001    # fresh time for one move

创建Q表的函数:

def build_q_table(n_states, actions):
    table = pd.DataFrame(
        np.zeros((n_states, len(actions))),     # q_table initial values
        columns=actions,    # actions's name
    )
    return table

行为选择的函数:行为选择过程中,使用这样长的表示也就是为了表达:在边界时候,机器人的路径有些不能选的,要不就超出索引的表格了。

def choose_action(state, q_table):
    state_actions = q_table.iloc[state, :]
    if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()):  # act non-greedy or state-action have no value
        if state==0:
            action_name=np.random.choice(['right','down'])
        elif state>0 and state<4:
            action_name=np.random.choice(['right','down','left'])
        elif state==4:
            action_name=np.random.choice(['left','down'])
        elif state==5 or state==15 or state==10 :
            action_name=np.random.choice(['right','up','down'])
        elif state==9 or state==14 or state==19 :
            action_name=np.random.choice(['left','up','down'])
        elif state==20:
            action_name=np.random.choice(['right','up'])
        elif state>20 and state<24:   
            action_name=np.random.choice(['right','up','left'])
        elif state==24:
            action_name=np.random.choice(['left','up'])
        else:
            action_name=np.random.choice(ACTIONS)
    else:   # act greedy
        action_name = state_actions.idxmax()    # replace argmax to idxmax as argmax means a different function in newer version of pandas
    return action_name

当贪婪系数更小时,更倾向于使用随机方案,或者当表初始时所有数据都为0,则使用随机方案进行行为选择。

当np.random.uniform()< =EPSILON时,则使用已经选择过的最优方案完成Qlearning的行为选择,也就是说,机器人并不会对远方的未知目标表示贪婪。(这里的表达是和上述公式的贪婪系数大小的作用是相反过来的)

奖赏表达:函数中参数S,表示state(状态),a表示action(行为),行为0到3分别表示左右上下。该表中,给出了在当前状态下,下一个方向会导致的奖惩情况。

def get_init_feedback_table(S,a):
    tab=np.ones((25,4))
    tab[8][1]=-10;tab[4][3]=-10;tab[14][2]=-10
    tab[11][1]=-10;tab[13][0]=-10;tab[7][3]=-10;tab[17][2]=-10
    tab[16][0]=-10;tab[20][2]=-10;tab[10][3]=-10;
    tab[18][0]=-10;tab[16][1]=-10;tab[22][2]=-10;tab[12][3]=-10
    tab[23][1]=50;tab[19][3]=50
    return tab[S,a]

获取奖惩:该函数调用了上一个奖惩表示的函数,获得奖惩信息,其中的参数S,A,同上。当状态S,A符合了下一步获得最终的结果时,则结束(终止),表示完成了目标任务。否则更新位置S。

def get_env_feedback(S, A):
    action={'left':0,'right':1,'up':2,'down':3};
    R=get_init_feedback_table(S,action[A])
    if (S==19 and action[A]==3) or (S==23 and action[A]==1):
        S = 'terminal'
        return S,R
    if action[A]==0:
        S-=1
    elif action[A]==1:
        S+=1
    elif action[A]==2:
        S-=5
    else:
        S+=5 
    return S, R

开始训练:首先初始化Q表,然后设定初始路径就是在0位置(也就是说每次机器人,从位置0开始出发)。训练迭代次数MAX_EPISODES已经在之前设置。在每一代的训练过程中,选择行为(随机或者使用Q表原有),然后根据选择的行为和当前的位置,获得奖惩情况:S_, R。当没有即将发生的行为不会到达最终目的地时候使用。

q_target = R + GAMMA * q_table.iloc[S_, :].max()
q_table.loc[S, A] += ALPHA * (q_target - q_table.loc[S, A])

这两行完成q表的更新。(对照贝尔曼方程),当完成时候,即终止,开始下一代的训练。

def rl():
    # main part of RL loop
    q_table = build_q_table(N_STATES, ACTIONS)
    for episode in range(MAX_EPISODES):
        S = 0
        is_terminated = False
 
        while not is_terminated:
            A = choose_action(S, q_table)
            S_, R = get_env_feedback(S, A)  # take action & get next state and reward
            if S_ != 'terminal':
                q_target = R + GAMMA * q_table.iloc[S_, :].max()   # next state is not terminal
            else:
                print(1)
                q_target = R     # next state is terminal
                is_terminated = True    # terminate this episode
 
            q_table.loc[S, A] += ALPHA * (q_target - q_table.loc[S, A])  # update
            S = S_  # move to next state
    return q_table
 
if __name__ == "__main__":
    q_table = rl()
    print('\r\nQ-table:\n')
    print(q_table)

注意:

贪婪系数会影响训练时间等。完整代码如下:

import numpy as np
import pandas as pd
import time

N_STATES = 25   # the length of the 2 dimensional world
ACTIONS = ['left', 'right','up','down']     # available actions
EPSILON = 0.3   # greedy police
ALPHA = 0.8     # learning rate
GAMMA = 0.9    # discount factor
MAX_EPISODES = 100   # maximum episodes
FRESH_TIME = 0.00001    # fresh time for one move

def build_q_table(n_states, actions):
    table = pd.DataFrame(
        np.zeros((n_states, len(actions))),     # q_table initial values
        columns=actions,    # actions's name
    )
    return table

def choose_action(state, q_table):
    state_actions = q_table.iloc[state, :]
    if (np.random.uniform() > EPSILON) or ((state_actions == 0).all()):  # act non-greedy or state-action have no value
        if state==0:
            action_name=np.random.choice(['right','down'])
        elif state>0 and state<4:
            action_name=np.random.choice(['right','down','left'])
        elif state==4:
            action_name=np.random.choice(['left','down'])
        elif state==5 or state==15 or state==10 :
            action_name=np.random.choice(['right','up','down'])
        elif state==9 or state==14 or state==19 :
            action_name=np.random.choice(['left','up','down'])
        elif state==20:
            action_name=np.random.choice(['right','up'])
        elif state>20 and state<24:
            action_name=np.random.choice(['right','up','left'])
        elif state==24:
            action_name=np.random.choice(['left','up'])
        else:
            action_name=np.random.choice(ACTIONS)
    else:   # act greedy
        action_name = state_actions.idxmax()    # replace argmax to idxmax as argmax means a different function in newer version of pandas
    return action_name


def get_init_feedback_table(S,a):
    tab=np.ones((25,4))
    tab[8][1]=-10;tab[4][3]=-10;tab[14][2]=-10
    tab[11][1]=-10;tab[13][0]=-10;tab[7][3]=-10;tab[17][2]=-10
    tab[16][0]=-10;tab[20][2]=-10;tab[10][3]=-10;
    tab[18][0]=-10;tab[16][1]=-10;tab[22][2]=-10;tab[12][3]=-10
    tab[23][1]=50;tab[19][3]=50
    return tab[S,a]

def get_env_feedback(S, A):
    action={'left':0,'right':1,'up':2,'down':3};
    R=get_init_feedback_table(S,action[A])
    if (S==19 and action[A]==3) or (S==23 and action[A]==1):
        S = 'terminal'
        return S,R
    if action[A]==0:
        S-=1
    elif action[A]==1:
        S+=1
    elif action[A]==2:
        S-=5
    else:
        S+=5
    return S, R

def rl():
    # main part of RL loop
    q_table = build_q_table(N_STATES, ACTIONS)
    for episode in range(MAX_EPISODES):
        S = 0
        is_terminated = False

        while not is_terminated:
            A = choose_action(S, q_table)
            S_, R = get_env_feedback(S, A)  # take action & get next state and reward
            if S_ != 'terminal':
                q_target = R + GAMMA * q_table.iloc[S_, :].max()   # next state is not terminal
            else:
                print(1)
                q_target = R     # next state is terminal
                is_terminated = True    # terminate this episode

            q_table.loc[S, A] += ALPHA * (q_target - q_table.loc[S, A])  # update
            S = S_  # move to next state
    return q_table

if __name__ == "__main__":
    q_table = rl()
    print('\r\nQ-table:\n')
    print(q_table)
阅读原文
阅读 3498
123 显示电脑版