主页 M

scikit-learn的基本分类方法和集成方法等

2019-02-25 网页编程网 网页编程网

1. 数据准备

关于分类,我们使用了Iris数据集,这个scikit-learn自带了.

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

注意,Iris数据集给出的三种花是按照顺序来的,前50个是第0类,51-100是第1类,101~150是第二类,如果我们分训练集和测试集的时候要把顺序打乱

引入一个两类shuffle的函数,它接收两个参数,分别是x和y,然后把x,y绑在一起shuffle。

def shuffle_in_unison(a, b):
    assert len(a) == len(b)
    import numpy
    shuffled_a = numpy.empty(a.shape, dtype=a.dtype)
    shuffled_b = numpy.empty(b.shape, dtype=b.dtype)
    permutation = numpy.random.permutation(len(a))
    for old_index, new_index in enumerate(permutation):
        shuffled_a[new_index] = a[old_index]
        shuffled_b[new_index] = b[old_index]
    return shuffled_a, shuffled_b

打乱Iris数据,然后分为100个训练集和50个测试集。

from sklearn.datasets import load_iris

iris = load_iris()
def load_data():
    iris.data, iris.target = shuffle_in_unison(iris.data, iris.target)
    x_train ,x_test = iris.data[:100],iris.data[100:]
    y_train, y_test = iris.target[:100].reshape(-1,1),iris.target[100:].reshape(-1,1)
    return x_train, y_train, x_test, y_test

2. 试验各种不同的方法

常用的分类方法一般有决策树, SVM, kNN, 朴素贝叶斯, 集成方法有随机森林,Adaboost和GBDT

完整代码如下:

from sklearn.datasets import load_iris
iris = load_iris()
def shuffle_in_unison(a, b):
    assert len(a) == len(b)
    import numpy
    shuffled_a = numpy.empty(a.shape, dtype=a.dtype)
    shuffled_b = numpy.empty(b.shape, dtype=b.dtype)
    permutation = numpy.random.permutation(len(a))
    for old_index, new_index in enumerate(permutation):
        shuffled_a[new_index] = a[old_index]
        shuffled_b[new_index] = b[old_index]
    return shuffled_a, shuffled_b

def load_data():
    iris.data, iris.target = shuffle_in_unison(iris.data, iris.target)
    x_train ,x_test = iris.data[:100],iris.data[100:]
    y_train, y_test = iris.target[:100].reshape(-1,1),iris.target[100:].reshape(-1,1)
    return x_train, y_train, x_test, y_test

from sklearn import tree, svm, naive_bayes,neighbors
from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, RandomForestClassifier, GradientBoostingClassifier


x_train, y_train, x_test, y_test = load_data()

clfs = {'svm': svm.SVC(),\
        'decision_tree':tree.DecisionTreeClassifier(),
        'naive_gaussian': naive_bayes.GaussianNB(), \
        'naive_mul':naive_bayes.MultinomialNB(),\
        'K_neighbor' : neighbors.KNeighborsClassifier(),\
        'bagging_knn' : BaggingClassifier(neighbors.KNeighborsClassifier(), max_samples=0.5,max_features=0.5), \
        'bagging_tree': BaggingClassifier(tree.DecisionTreeClassifier(), max_samples=0.5,max_features=0.5),
        'random_forest' : RandomForestClassifier(n_estimators=50),\
        'adaboost':AdaBoostClassifier(n_estimators=50),\
        'gradient_boost' : GradientBoostingClassifier(n_estimators=50, learning_rate=1.0,max_depth=1, random_state=0)
        }

def try_different_method(clf):
    clf.fit(x_train,y_train.ravel())
    score = clf.score(x_test,y_test.ravel())
    print('the score is :', score)

for clf_key in clfs.keys():
    print('the classifier is :',clf_key)
    clf = clfs[clf_key]
    try_different_method(clf)

给出的结果如下:

the classifier is : svm

the score is : 0.94

the classifier is : decision_tree

the score is : 0.88

the classifier is : naive_gaussian

the score is : 0.96

the classifier is : naive_mul

the score is : 0.8

the classifier is : K_neighbor

the score is : 0.94

the classifier is : gradient_boost

the score is : 0.88

the classifier is : adaboost

the score is : 0.62

the classifier is : bagging_tree

the score is : 0.94

the classifier is : bagging_knn

the score is : 0.94

the classifier is : random_forest

the score is : 0.92

阅读原文
阅读 5538
123 显示电脑版